Semiconductor Silicon of Mitsubishi Materials Group.
نویسندگان
چکیده
منابع مشابه
Nanomembrane-based materials for Group IV semiconductor quantum electronics
Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the e...
متن کاملSemiconductor Materials :-
The label semiconductor itself provides a hint as to its characteristics. The prefix semis normally applied to a range of levels midway between two limits. The term conductor is applied to any material that will support a generous flow of charge when a voltage source of limited magnitude is applied across its terminals. An insulator is a material that offers a very low level of conductivity und...
متن کاملSemiconductor Engineering .:. Darker Silicon
As most readers already know, however, there was a limit. Smaller devices with thinner dielectrics and shorter channels are more prone to leakage. Indeed, leakage, negligible for much of the industry’s history and ignored in Dennard’s original paper (http://ieeexplore.ieee.org /xpl/articleDetails.jsp?reload=true&arnumber=4785543), now approaches the same order of magnitude as the circuit’s dyna...
متن کاملMicrocavities in Semiconductor Materials
Positron beam and helium desorption techniques have been applied to different materials, in particular semiconductor materials, to determine the presence of defects. The positron technique yields values of the positron diffusion length and values of the Doppler broadening parameters. In principle, defect concentrations can be derived and an indication can be obtained about the nature of the def...
متن کاملMetal-semiconductor nanocontacts: silicon nanowires
Silicon nanowires assembled from clusters or etched from the bulk, connected to aluminum electrodes and passivated, are studied with large-scale local-density-functional simulations. Short ( approximately 0.6 nm) wires are fully metallized by metal-induced gap states resulting in finite conductance ( approximately e(2)/h). For longer wires ( approximately 2.5 nm) nanoscale Schottky barriers dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Shigen-to-Sozai
سال: 1993
ISSN: 0916-1740,1880-6244
DOI: 10.2473/shigentosozai.109.1191